Extracranial Estimation of Neural Mass Model Parameters Using the Unscented Kalman Filter
نویسندگان
چکیده
منابع مشابه
Extracranial estimation of neural mass model parameters using the Unscented Kalman Filter
Data assimilation, defined as the fusion of data with preexisting knowledge, is particularly suited to elucidating underlying phenomena from noisy/insufficient observations. Although this approach has been widely used in diverse fields, only recently have efforts been directed to problems in neuroscience, using mainly intracranial data and thus limiting its applicability to invasive measurement...
متن کاملNeural Tractography Using an Unscented Kalman Filter
We describe a technique to simultaneously estimate a local neural fiber model and trace out its path. Existing techniques estimate the local fiber orientation at each voxel independently so there is no running knowledge of confidence in the estimated fiber model. We formulate fiber tracking as recursive estimation: at each step of tracing the fiber, the current estimate is guided by the previou...
متن کاملThe Unscented Kalman Filter for Nonlinear Estimation
The Extended Kalman Filter (EKF) has become a standard technique used in a number of nonlinear estimation and machine learning applications. These include estimating the state of a nonlinear dynamic system, estimating parameters for nonlinear system identification (e.g., learning the weights of a neural network), and dual estimation (e.g., the ExpectationMaximization (EM) algorithm)where both s...
متن کاملVision-Based Relative State Estimation Using the Unscented Kalman Filter
A new approach for spacecraft absolute attitude estimation based on the unscented Kalman filter (UKF) is extended to relative attitude estimation and navigation. This approach for nonlinear systems has faster convergence than the approach based on the standard extended Kalman filter (EKF) even with inaccurate initial conditions in attitude estimation and navigation problems. The filter formulat...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Applied Mathematics and Statistics
سال: 2018
ISSN: 2297-4687
DOI: 10.3389/fams.2018.00046